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ABSTRACT 

       Fractal image compression (FIC) is an image coding technology based on the 

local similarity of image structure. FIC offers high compression ratio and good quality 

of retrieved images, which makes FIC a widely approved technology. However, 

fractal-based algorithms are strongly asymmetric because, in spite of the linearity of 

the decoding phase, the coding process is much more time consuming. Many 

algorithms have been developed to reduce the computational complexity involved in 

searching local self-similarities in an image. The proposed method, Grover’s Quantum 

search algorithm (QSA) is optimal in search problems and achieves square-root 

speedup over classical algorithms in unsorted database searching. For this reasons, an 

attempt is made to apply Grover’s QSA to FIC to reduce the computational 

complexity of FIC unprecedentedly. 

To utilise quantum computing on FIC, a representation known as quantum 

representation is adopted on an image and is combined with Grover’s search to yield a 

superior algorithm. The quantum superposition of image can create an enormously 

enhanced computing power. First, image is divided into two kinds of blocks namely, 

domain blocks and range blocks, and they are represented as quantum states. Then, 

Grover’s QSA is employed to search the most similar domain block for each range 

block under the criterion of maximizing quantum fidelity between these two kinds of 

quantum states. The quantum fidelity calculated can reduce the minimum matching 

error between a given range block and its corresponding domain block, and thus, it 

can enhance the possibility of successful domain-range matching. A comparative 

analysis of existing DCT-FIC and proposed algorithm has been carried out using 

Compression ratio (CR), Computational complexity and PSNR. The experimental 

result shows that proposed algorithm achieves Compression ratio and PSNR 16% and 

15% higher than DCT-FIC algorithm respectively. At the same time, Computational 

complexity is reduced to O(√N) in the proposed algorithm. In comparison with 

existing scheme which uses statistical parameter such as MSE to find the most similar 

block, the improved scheme therefore results in a considerable acceleration of the 

encoding process, enhanced retrieved image quality and good compression ratio.  
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW OF IMAGE COMPRESSION 

The increasing demand for multimedia content such as digital images and video 

has led to great interest in research into compression techniques. The development of 

higher quality and less expensive image acquisition devices has produced steady 

increases in both image size and resolution, and a greater consequent for the design of 

efficient compression systems. Although storage capacity and transfer bandwidth has 

grown accordingly in recent years, many applications still require compression. In 

general, this thesis investigates still image compression in the spatial domain. 

Textures, Satellite and volumetric digital images are the main topics for analysis. The 

main objective is to design a compression system suitable for processing, storage and 

transmission, as well as providing acceptable computational complexity suitable for 

practical implementation [19]. The basic rule of compression is to reduce the numbers 

of bits needed to represent an image. In a computer an image is represented as an 

array of numbers, integers to be more specific, that is called as digital image. The 

image array is usually two dimensional (2D), if it is black and white (BW) and three 

dimensional (3D) if it is colour image. Digital image compression algorithms exploit 

the redundancy in an image so that it can be represented using a smaller number of 

bits while still maintaining acceptable visual quality. 

Redundancy and Irrelevancy reduction is the two fundamental components of 

compression. Redundancy reduction aims at removing duplication from the signal 

source (image/video). Irrelevancy reduction omits part of the signal that will not be 

noticed by the signal receiver namely HVS (Human Visual System).  

Factors related to the need for image compression include:  

  Large storage requirements for multimedia data  

  Low power devices such as handheld phones have small storage capacity  

  Network bandwidths currently available for transmission  

  Effect of computational complexity on practical implementation  
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1.2 FRACTAL IMAGE COMPRESSION 

Fractal Image Compression (FIC) was first proposed by Michael Barnsley in 

1987, who introduced basic principle of FIC. Self-similarity concept is the basis and 

premise of FIC. FIC is a technique which is used to encode the image in such a way 

that it reduces the storage space by using self-similar portion of the same image. FIC 

is a lossy compression technique for digital image, based on fractals. In certain 

images, some parts of the image resemble the other parts of same image, these self-

similar parts are called fractal and these fractals are used in order to compress image. 

Fractal algorithms convert these parts (referred as fractals) or geometric shapes into 

mathematical information which is also called as ‘fractal codes’ which are later used 

to reconstruct an image. Once the image is converted into fractal code it becomes 

resolution independent. In the Figure.1.1 it is observed that whole image is repeated 

pattern of the part of the same image. 

 

Figure.1.1 Fractal Fern 

A general image has copies of parts of itself rather than the whole self. For 

example, the image Lena in Figure.1.2 has sample regions in the white squares. These 

sample regions are similar at different scales: a portion of her shoulder overlaps a 

region that is almost identical, and a portion of the reflection of the hat in the mirror is 

similar to a part of her hat.   
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Figure.1.2 Lena Image with Self-similarities at different scale 

FIC is a block based image compression, detecting and coding the existing 

similarities between different regions in the image. For conventional fractal 

compression schemes, an image is partitioned into domain blocks and range blocks, 

the self-similarities exploiting between these two kinds of blocks in the spatial domain 

is computationally expensive, usually hundreds of seconds is used to encoding an 

image, which restricts the application of fractal image compression [11]. 

The process of fractal image coding is finding the appropriate domain block for 

each range block using Iterated function system (IFS) mapping. In IFS mapping, 

coefficient will represent a data of block of the compressed image.  Thus a digitized 

image can be stored as a collection of Iterated function system (IFS) transformations 

parameters and is easily regenerated or decoded for use or display. The storage of the 

IFS transformation coefficients results in relatively high compression ratios and good 

reconstruction fidelity. Figure.1.3 illustrates the storage of IFS transformation 

coefficients along with fractal structure. 

 

Figure.1.3 Fractal Image and Storage of  IFS Transformation coefficients with 

Fractal Structure 
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1.2.1 Merits and Demerits of FIC 

When compared to other compression method which is used for compressing 

different kind of images, FIC has some main advantages and drawbacks. 

Merits: 

• Mathematical encoding frame is good 

• Resolution independent 

• Achieves high compression ratio 

• Fast decoding 

Demerits: 

• Encoding speed is slow 

1.2.2 Motivation and Problem Statement 

FIC suffers from high computational cost in searching local self-similarities in 

natural image. Recent studies aims at speeding up FIC using pre-processing tools or 

approximation methods. But reducing the intrinsic computational complexity of FIC is 

still an open problem. Motivated by this, an algorithm based on quantum computing is 

introduced to reduce the intrinsic computational complexity in searching local self-

similarities. 

1.2.3 Objectives 

The main objective of the project is to reduce the intrinsic computational 

complexity using Quantum based FIC. The sub objective is to maintain quality of 

retrieved images without sacrificing compression ratio and to compare the 

performance of the proposed algorithm with existing algorithm such as DCT-FIC.  

1.3 INTRODUCTION TO QUANTUM COMPUTING 

Quantum computing is a promising approach of computation that is based on 

equations from Quantum Mechanics. The idea of a quantum computer was first 

proposed in 1981 by Nobel laureate Richard Feynman, who pointed out that 

accurately and efficiently simulating quantum mechanical systems would be 

impossible on a classical computer, but that a new kind of machine, a computer itself 
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“built of quantum mechanical elements which obey quantum mechanical laws", might 

one day perform efficient simulations of quantum systems. Classical computers are 

inherently unable to simulate such a system using sub-exponential time and space 

complexity due to the exponential growth of the amount of data required to 

completely represent a quantum system. Quantum computers, on the other hand, 

exploit the unique, non-classical properties of the quantum systems from which they 

are built, allowing them to process exponentially large quantities of information in 

only polynomial time. Of course, this kind of computational power could have 

applications to a multitude of problems outside quantum mechanics, and in the same 

way that classical computation quickly branched away from its narrow beginnings 

facilitating simulations of Newtonian mechanics, the study of quantum algorithms has 

diverged greatly from simply simulating quantum physical systems to impact a wide 

variety of fields, including information theory, cryptography, language theory, and 

mathematics. 

1.3.1 Fundamental difference in Mathematical representation 

Quantum computers employ the laws of quantum mechanics to provide a vastly 

different mechanism for computation than that available from classical machines. 

Fortunately for computer scientists interested in the field of quantum computing, a 

deep knowledge of quantum physics is not a prerequisite for understanding quantum 

algorithms, in the same way that one need not know how to build a processor in order 

to design classical algorithms. However, it is still important to be familiar with the 

basic concepts that differentiate quantum mechanical systems from classical ones in 

order to gain a better intuitive understanding of the mathematics of quantum 

computation, as well as of the algorithms themselves [48]. 

The first distinguishing trait of a quantum system is known as superposition, or 

more formally the superposition principle of quantum mechanics [22]. Rather than 

existing in one distinct state at a time, a quantum system is actually in all of its 

possible states at the same time. With respect to a quantum computer, this means that 

a quantum register exists in a superposition of all its possible configurations of 0's and 

1's at the same time, unlike a classical system whose register contain only one value at 
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any given time. It is not until the system is observed that it collapses into an 

observable, definite classical state. 

It is still possible to compute using such a seemingly unruly system because 

probabilities can be assigned to each of the possible states of the system. Thus a 

quantum system is probabilistic: there is a computable probability corresponding to 

the likelihood that that any given state will be observed if the system is measured. 

Quantum computation is performed by increasing the probability of observing the 

correct state to a sufficiently high value so that the correct answer may be found with 

a reasonable amount of certainty. 

Quantum systems may also exhibit entanglement [25]. A state is considered 

entangled, if it cannot be decomposed into its more fundamental parts. In other words, 

two distinct elements of a system are entangled if one part cannot be described 

without taking the other part into consideration. In a quantum computer, it is possible 

for the probability of observing a given configuration of two qubits to depend on the 

probability of observing another possible configuration of those qubits, and it is 

impossible to describe the probability of observing one configuration without 

considering the other. An especially interesting quality of quantum entanglement is 

that elements of a quantum system may be entangled even when they are separated by 

considerable space. The exact physics of quantum entanglement remain elusive even 

to professionals in the field, but that has not stopped them from applying entanglement 

to quantum information theory. Quantum teleportation, an important concept in the 

field of quantum cryptography, relies on entangled quantum states to send quantum 

information adequately accurately and over relatively long distances. 

1.3.2 Quantum Algorithms 

There is a wealth of interesting and important algorithms have been developed 

for quantum computers. The algorithms like Shor’s algorithm, Grover’s algorithm and 

Simon’s algorithm can be reviewed in order to better elucidate the study of quantum 

computing theory and quantum algorithm design. These algorithms are good models 

for current understanding of quantum computation as many other quantum algorithms 
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use similar techniques to achieve their results, whether it is an algorithm to solve 

linear systems of equations, or quickly compute discrete logarithms. 

The algorithm that is explored here is Lov Grover's quantum database search. 

Classically, searching an unsorted database requires a linear search, which is O(N) in 

time. Grover's algorithm, which takes O(N
1/2

) time, is the fastest possible quantum 

algorithm for searching an unsorted database. It provides "only" a quadratic speedup, 

unlike other quantum algorithms, which can provide an exponential speedup over their 

classical counterparts. However, even quadratic speedup is considerable when N is 

large.  

Like all quantum computer algorithms, Grover's algorithm is probabilistic, in the 

sense that it gives the correct answer with high probability. The probability of failure 

can be decreased by repeating the algorithm. 

1.3.3 Uses of Grover’s algorithm 

Although the purpose of Grover’s algorithm is usually described as searching a 

database, it may be more accurate to describe it as inverting a function. Roughly 

speaking, if we have a function y=f(x) that can be evaluated on a quantum computer, 

Grover's algorithm allows us to calculate x when given y. Inverting a function is 

related to the searching of a database because we could come up with a function that 

produces a particular value of y if x matches a desired entry in a database, and another 

value of y for other values of x. 

The entire project report is structured as follows. In Chapter II, the techniques in 

the literature related to fractal image compression (FIC) are reviewed. In Chapter III, 

few existing algorithm is introduced and the comparative analysis is made on the 

existing algorithms. In Chapter IV, focus is on the flow of proposed algorithm and 

several optimization methods involved in the proposed scheme. The experiment 

results are shown in Chapter V. Finally, the conclusions are drawn in Chapter VI. 
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CHAPTER 2 

LITERATURE SURVEY 

 

The significant computational requirements of the domain search resulted in 

lengthy coding times for early fractal compression algorithms. The design of efficient 

domain search techniques has consequently been one the most active areas of research 

in fractal coding, resulting in a wide variety of solutions. The various techniques in the 

literature related to fractal image compression (FIC) are reviewed to improve the 

efficiency of FIC. 

Invariant representation 

In [1], the search for the best domain block for a particular range block is 

complicated by the requirement that the range matches a transformed version of a 

domain block; the problem is in fact to find for each range block, the domain block 

that can be made the closest by an admissible transform. The problem may be 

simplified by constructing an appropriate invariant representation for each image 

block. Transforming range and contracted domain blocks to this representation allows 

direct distance comparisons between them to determine the best possible match. 

In [2], Invariant representations for the single constant block transform utilise 

the DCT (or another orthogonal transform) of the vector followed by zeroing of the 

DC term and normalisation. This representation can decrease the time required for an 

efficient domain search, and allows the utilisation of a distance measure adapted to the 

properties of the human visual system. 

In [3], FFT based fractal image coding with variable quad-tree partition is used. 

This algorithm is applied to the approximation sub-band and three detail sub-bands of 

the wavelet transformed image. Quad-tree partitioned wavelet sub-tree is constructed 

after wavelet decomposition of fractal decoded approximation sub-band image. The 

self-similarities existing in wavelet sub-tree are exploited by predicting the 

coefficients at finer scale from those at coarser scale using affine transformation. 

In conventional fractal coding algorithm the main drawbacks are high encoding 

time, blocking artefacts at low bit rates. These twin drawbacks can be avoided if 
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fractal transformation is in the wavelet domain. Many authors combined wavelets with 

fractal coding to obtain high quality for compression at low bit rate. The objective of 

combining wavelet and fractal coding is to increase the encoding speed and high 

compression ratio than pure fast fractal algorithm. Wavelet transform perform 

decomposition of image signals into multi resolution with set of tree structured 

coefficients. These coefficients have the same spatial location with different resolution 

and orientation. In wavelet transform based fractal coding, the high frequency 

coefficients of one level is predicted from the next level sub-band coefficients because 

they are highly correlated. Fast fractal encoding, normalized cross correlation with 

mean square error (MSE) as matching criteria is applied to only low frequency 

components using quad-tree partition. Other wavelet coefficients are predicted using 

non iterative fractal coding with variable size sub-tree representation. This helps to 

improve the visual quality without blocking artefacts at low bit rates than JPEG. 

Regarding speed, the proposed method presents an average 92% reduction of coding 

time comparing to the fast fractal image coding. But the main drawback in proposed 

method is that, for high bitrates, the visual quality is poor as there is blocking 

artefacts. 

Furao & Hasegawa [4,] has proposed fractal coding method based on without 

search. Wavelets transform and Diamond search based hybrid fractal coding proposed 

by Zhang [5]. Chen [6] proposed Kick-out method to discard impossible domain 

blocks based on one–norm in early stage of current range block is used, in this method 

for the comparison of range and domain blocks normalization of range and domain 

block is performed.  

In parallel approach by Palazzari [7] the image is divided into blocks each block 

is processed by the one processor. Each processor executes sequential algorithm on its 

block and returns the result. Limitation of this approach is it uses coarse grained input 

data. i.e., each processor only works on the subset of domain blocks this result in 

insufficient mapping. So the resultant image will be inferior to sequential approach. In 

this method diamond search is applied to find matching domain block with range 

block, like motion estimation technique in video compression.  
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GPU based fractal image compression for medical imaging is demonstrated [8]. 

Results show drastic reduction in encoding time due to use of parallel approach. 

Cluster of GPU is used for fractal image compression by Chauhan [9]. In this 

approach domain pool is divided on to slave machines by master node and range 

blocks are circulated in pipelined manner across all slaves till the match is found. If 

match is not found then master divides the range and re-circulate it.  

Fitting Plane 

In [10], based on Wang’s fitting plane-based fractal image coding using least 

square regression (LS-FPFIC), Jian Lu, Zhongxing Ye and Yuru Zou proposes an 

efficient Huber fitting plane-based fractal image compression method (HFPFIC). In 

the HFPFIC, by building Huber fitting planes for the domain and range blocks, a new 

matching error function is proposed to avoid that the corrupted data is present as the 

independent variable in the Huber regression model, and a weighted operator is 

utilized to eliminate the influence of outliers on evaluating the matching error. Since 

the Huber fitting planes for all domain blocks are calculated in advance before the 

matching process is carried out, the number of robust regression-iterations for full 

search HFPFIC is considerably reduced when comparing to the other full search 

robust FIC methods.  

Furthermore, this paper proposes a normalized median absolute deviation about 

the median (MAD) decomposition criterion used as adaptive quad-tree partitioning 

scheme, which works very fast and achieves very nice partitioning results both for 

noiseless and salt & pepper noisy images. In order to relieve the high computational 

complexity, the no-search scheme is utilized to accelerate the encoding process. The 

results show that, especially for the noisy image corrupted by salt & pepper noise, 

compared with conventional robust fractal image coding methods, the proposed 

algorithm can save the encoding time and improve the restored image quality 

efficiently. It is shown that, when applying the Huber fitting plane (HFP) technique to 

encode the corrupted image directly, it can achieve good image quality and extremely 

fast encoding speed. 
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Though FIC methods achieved robustness against the outliers caused by salt & 

pepper noise they do not show significant improvement in image quality for Gaussian 

and Laplace noises. However, these robust FIC methods are not quite satisfactory. 

Besides the high computational cost, the domain block containing hidden outliers 

under the samples is used as the independent variable in the robust regression model, 

which may negatively influence the performance of the robust estimator for the 

computation of the fractal parameters. 

Classification 

Classification based search techniques often do not explicitly utilise an invariant 

representation as formalised above, but rely instead on features which are at least 

approximately invariant to the transforms applied. Domain and range blocks may 

either be classified into a fixed number of classes according to these features[11][12],  

a matching domain for each range only being sought within the same class, or 

inspection of domains may be restricted to those with feature values close to those of 

the range. 

In [13], a novel fractal compression scheme to meet both the efficiency and the 

reconstructed image quality requirements is proposed. This scheme is based on the 

fact that the affine similarity between two image blocks is equivalent to the absolute 

value of Pearson’s correlation coefficient (APCC) between them. Firstly, all the 

domain blocks are classified into 3 classes according to the classification method. 

Secondly, the domain blocks are with respect to APCCs between these domain blocks 

and a preset block in each class, and then the matching domain block for a range block 

can be searched in the selected domain set in which these APCCs are closer to APCC 

between the range block and the preset block. Since both the steps in our scheme are 

based on APCC which is equivalent to the affine similarity in FIC, the reconstructed 

image quality is well preserved. Moreover, the encoding time is significantly reduced 

in our APCC-based FIC scheme. The block D satisfying |ρ(R,D)|→ 1 is usually hard 

to search for R, it is important to choose a proper block as the preset block B to search 

the best approximate D. 
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Hassaballah [14] used Entropy based approach to classify the domain blocks. 

Fidelity of reconstructed image is poor in this case. Wang [13] used absolute value of 

Pearson correlation coefficient to classify domain blocks. Range blocks restricted to 

search in area of sorted list where correlation is maximum. 

It is evident that the algorithm performs better than the baseline algorithm in 

terms of time and PSNR. However, one of the difficulties with fractal coding is that its 

faster implementations tend to be a little memory-hungry. Therefore, it is interesting 

to consider the methods under exam from the point of view of memory usage, 

showing in what circumstances the domain tree results in memory savings respect to 

the other spatial access methods. 

Segmentation 

In [15], Kamel Belloulata and Janusz Konrad explore fractal image coding in the 

context of region-based functionality with two region-based fractal coding schemes 

implemented in spatial and transform domains, respectively. In both approaches 

regions are defined by a prior segmentation map and are fractal-encoded 

independently of each other. A new dissimilarity measure is proposed that is limited to 

single-region pixels of the range block. The computational complexity of encoding an 

image using the proposed method is directly related to the size of search space over 

which the distortion is minimized; the number of permissible domain blocks plays the 

dominant role. The most demanding case is when each segment of every domain 

block of the image is considered; the domain-block codebook is built from the whole 

image. This exhaustive procedure is theoretically optimal but extremely involved 

computationally. Moreover, it does not allow for independent decoding of regions. 

In DCT-based fractal coding, boundary range blocks contain pixels from two or 

more objects. Thus, similarly to the spatial-domain case, independent decoding of 

objects is not possible. Also, the coding quality may suffer since pixels on different 

sides of the boundary may have different characteristics; by applying the standard 

DCT to such a block, spectral properties of these pixels are mixed up making the 

search for a good range-domain correspondence unreliable. In particular, a sharp 

intensity transition may cause significant spectral oscillations. Wang Hai [16] 
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proposed Graph-based image segmentation approach to separate an input image into 

many different logic areas according to image content and to construct search space 

for each logic area. Each logic area is encoded using adaptive threshold quad-tree 

approach for fast image compression. 

Feature Extraction 

In [17] Riccardo Distasi, Michele Nappi, and Daniel Riccio proposed a new 

approach, namely deferring range/domain comparison (DRDC), based on feature 

vectors. The main idea is to defer the comparisons between ranges and domains. 

Rather, a preset block is used as a temporary replacement. The preset block is 

computed as the average of the ranges present in the image. The coding phase is 

divided in two phases. 

In the first phase, where the domain codebook is created, all the domains are 

extracted from the image, then each of them is compared with the preset block by 

solving a mean square root problem. The preset block/domain approximation error is 

computed and stored in a KD-tree data structure. In the second phase, the ranges have 

to be encoded; each one of them is compared with the preset block, thus obtaining the 

preset block/range approximation error, in the same way as performed for domains. 

Using this data, it is found the domains that are likely to encode the current range with 

the best accuracy. This criterion proves that a generic range block is accurately coded 

by domains with equal or similar approximation error. In this way, for each range we 

have to perform a much smaller number of range/domain comparisons, and the time 

spent for coding is significantly reduced.  

Kung [18] used one dimensional DCT for feature extraction and blocks are 

classified into 4 types of edges. The structure similarity (SSIM) index is used instead 

of MSE to reduce computation complexity. 

Quantum Based Methods 

Venegas-Andraca and Bose [19] introduced image representation on the 

quantum computers by proposing the ‘qubit lattice’ method, in which each pixel was 

represented in its quantum state and then a quantum matrix was created with them.  
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The ’qubit lattice’ representation was incorporated by Yuan [20] in their simple 

quantum representation (SQR) method for infrared images. The SQR method replaced 

the color information with the radiation values as the coefficient values.  

Inspired by ‘qubit lattice’, Li [21] proposed a quantum representation of images 

which explicitly included and encoded the pixel position along with the color 

information. Subsequently, Li [22-23] extended their previous works to 

multidimensional color images using quantum super position. However, these 

methods [21-23] are constrained by qubit angle that has upper bound for the number 

of values it can possess. The qubit angle encodes the color information and is highly 

dependent on the image dimensions and the bit depth of color.  

In another work, Venegas-Andraca and Ball [24] proposed an ‘entangled image’ 

method for representing shapes in binary images through quantum entanglement. 

They only concentrated on binary images, whereas real life images possess multiple 

intensity levels. Both ‘qubit lattice’ and ‘entangled image’ are the quantum analog of 

classical images, and do not utilize the superposition property of quantum 

computation to represent all the pixels together.  

Latorre [25] proposed the ‘real ket’ approach that used quad-tree to locate each 

pixel using 4-D qubit sequence. In order to be efficient, ‘real ket’ requires image pixel 

values to be random, which is rare as images are highly correlated. 

Le [26, 27] provided a flexible representation of quantum images (FRQI) for 

multiple intensity levels in a 2-D pixel representation, enabling various image 

processing operations and applications.  

Sun [28, 33] expanded FRQI into three color channel RGB image. Through 

novel enhanced quantum representation (NEQR), Zhang [29] (also independently 

proposed by Caraiman and Manta [34]) provided an alternate approach to FRQI by 

storing the intensity information into qubits, along with the pixel information at the 

cost of increasing the number of qubits. Moreover, this method can only represent 

images with unsigned integer values.  

In a separate work, Zhang [35] also presented a quantum image representation 

method, named quantum log-polar image (QUALPI), for the unsigned integer images 

acquired in the log-polar coordinate system. 
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Among all the above methods, FRQI and NEQR are most comprehensive and 

have been used to develop many image processing applications [21-29], [34-47]. A 

detailed literature survey can be found in [48, 49].  

However, one of the difficulties with quantum based method is that, when the 

domain-range block size is reduced to improve compression ratio, it tends to be 

computationally expensive in searching similarities. Therefore, it is interesting to 

consider the methods under exam from the point of view of reducing computational 

complexity in searching self-similarities. A possible approach could be use of 

Grover’s search with quantum representation. 
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CHAPTER 3 

EXISTING METHOD 

3.1  FRACTAL CODING ALGORITHMS 

Fractal coding is a method of image compression. The main principle of the 

fractal transform coding is based on the hypothesis that the image redundancies can be 

efficiently exploited by means of block self-affine transformations. By removing the 

redundancy related to self-similarity in an image. Fractal image compression can 

achieve a higher compression ratio with high decoding quality. Fractal coding has the 

advantage such as resolution independence and fast decoding as compare to other 

image compression methods. So fractal image compression is a promising technique 

that has great potential to improve the efficiency of image storage and image 

transmission. The problem with fractal coding is the highly computational complexity 

in the encoding process. Few Fractal coding algorithms that focus on reducing 

encoding complexity are, 

 Quad-tree Decomposition and Huffman Coding 

 DCT Based Fractal Image Compression 

 

3.1.1  Quad-tree Decomposition and Huffman Coding 

Quad-tree Decomposition is one of the partition based methods. It divides an 

image into variable size range block. In this type of partition, a square image is split 

into square blocks of equal sizes, and then tests each block to check whether each 

block meets some criteria of homogeneity. If a block meets the criteria it is not 

divided any further, if the block does not meet the criteria, then the block is splited 

into further four blocks and again test is applied to those blocks. This process is 

repeated iteratively until each and every block meets the criteria resulting in many 

different sizes of blocks. It is represented in a tree like structure, where each node will 

have four sub nodes. Adjustment of quad-tree size is done by using two parameters, 

minimum level and maximum level. By this method it is possible to increase the 

compression ratio and reduce the bits used to represent an image i.e. bits per pixel 

(bpp).  Huffman coding method was introduced by D.A.Huffman. This is used to 
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remove the redundancy in the image. In this algorithm the probability of all alphabet 

symbols are arranged in decreasing order. Then it constructs from the bottom up, a 

binary tree with a symbol at every leaf node. This is done in steps, where in each step 

two symbols with the smallest probability are chosen and added, placed in the top of 

the tree and then deleted from the list, and replaced with another symbol representing 

the two original symbols. This is repeated until only two symbols are retained at the 

end of the tree. Finally to determine the codeword’s of the symbols the tree is 

traversed from leaf node to root node. It is a variable length coding. According to this 

algorithm, the symbols with small frequency will have long code words and vice- 

versa. 

Algorithm steps: 

1. Divide the original image using Quad-tree decomposition of threshold 0.2, 

minimum Dimension and maximum dimension of 2 and 64 respectively. 

2. Record the values of x and y coordinates, mean value and block size from Quad-

tree Decomposition. 

3. Record the fractal coding information to complete encoding of the image using 

Huffman coding and then calculate the compression ratio. 

4. For the encoded image, apply Huffman decoding to reconstruct the image and 

calculate PSNR as shown in Figure.3.1. 

 

Figure.3.1 QDHC Fractal Compression Technique 
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3.1.2  DCT Based Fractal Image Compression 

To improve the fractal encoding speed, this algorithm proposes a new block 

classification method based on the edge characteristic of an image block. The essence 

of this method is that if the domain block has the same edge characteristic to the range 

block then they are similar in fractal meanings. By restricting the exploiting range of 

domain block, this method can not only fasten the fractal encoding speed, but also 

guarantee the quality of the decoded image. In DCT coefficients, lower frequency 

coefficients represent the main energy of an image, while the higher frequency 

coefficients represent the edge information. Therefore if two image blocks are similar 

besides some detailed information, then their DCT lower frequency coefficients are 

approximately equal. So it is sufficient to use lower coefficient for evaluating the 

similarity degree between two image blocks [2]. 

Algorithm steps: 

 (1) Image partition 

Let I be a gray-scale image to be encoded. Partition I into a set of B×B pixels 

range blocks, which are non-overlapping and overlay the whole image. Image I is also 

partitioned into a set of 2B×2B pixels domain blocks, which can be overlapping and 

need not overlay the whole image. The D block partition process can be done by 

sliding a 2B×2B window from left to right, top to bottom with horizontal step δh and 

vertical step δv. Here δh= δv=B. 

(2) Best match exploiting 

After R blocks and D blocks are constructed, the next step is exploiting best 

match for each R block. First, each D block is compressed in spatial domain to 

reduced block D’, which has the same size to R block. The compression method is 

reducing four adjacent pixels to one pixel, whose gray-scale is the average of the four 

pixels. The matching process is selecting a block Ri, then finding a Dj block with the 

same class as the block Ri, 8 isometric transformation are done for each Dj block, as 

shown in table.3.1. 

The best matching D block for R block is determined by evaluating the MSE 

(Mean Square Error) between Ri and each Dj with 8 isometric transformation. The 

minimum MSE means the best match. The MSE is determined by 
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where the contrast factor si is 

       
 (∑       

   )  ∑     
     ∑   

 
    

 ∑       ∑     
      

   

         (3.2) 

and the brightness factor oi is 

         
 

 
 ∑      

 
   ∑    

 
         (3.3) 

Table.3.1 Eight Isometric transformation 

 

 

Finally, the four parameters of the best match D block constructs the fractal 

code, they are position of the block, isometric transformation number, contrast factor 

and brightness factor. 
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3.2 COMPARATIVE ANALYSIS 

 

Figure.3.2 Comparison of visual image quality of reconstructed image for QDHC and 

DCT respectively 

Original and reconstructed images for the two algorithms are shown in 

Figure.3.2. It can be seen that DCT-FIC based reconstructed image quality is better 

than the QDHC algorithm based reconstructed image. 

 Table.3.2 and Table.3.3 gives the obtained Compression ratio, PSNR and 

Compression Time for the QDHC algorithm and DCT-FIC algorithm respectively. 

The values are tabulated for three kinds of image: Lena image, Texture image and 

Satellite Image. It is observed that, in both the algorithms Compression ratio and 

PSNR obtained for fractal geometry based image is higher than that of Lena image. 

Table.3.2 Quad-tree Decomposition and Huffman Coding 

Image(512X512) Compression 

ratio 

Compression 

Time 

PSNR 

Lena 
10.115922 1.849794 seconds 25.692002 

Texture 
17.826862 1.947244 seconds 28.047388 

Satellite 
25.647588 0.780619 seconds 27.735443 

 

 

   H-QDHC        DCT 
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Table.3.3 DCT based Fractal Image Compression 

Image(512X512) Compression 

ratio 

Compression 

Time 

PSNR 

Lena 37.4391 2.084829 seconds 34.0181280 

Texture 22.5821 4.295735 seconds 38.3627523 

Satellite 27.8954 3.689613 seconds 34.3149391 

 

It can be seen from Figure.3.3 and Figure.3.4 the compression ratio CR is high 

for DCT-FIC as compare to QDHC, without degrading quality of reconstructed image. 

Though, it is seen that from Figure.3.5 DCT-FIC has larger compression time than the 

QDHC, it is considered to be more efficient on concerning domain-range based search 

algorithms. 

 

 

Figure.3.3 Comparison graph based on compression ratio 
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Figure.3.4. Comparison graph based on PSNR 
 

 

Figure.3.5 Comparison graph based on compression time 
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CHAPTER 4 

PROPOSED METHOD 

4.1  QUANTUM BASED FRACTAL CODING ALGORITHM 

Quantum computation is the field that investigates the computational power of 

computer based on quantum-mechanical principles. In recent times, there has been 

significant progress in quantum computing. Richard Feynman, who was interested in 

using a computer to simulate quantum systems, first investigated using quantum 

systems to do computation in 1982. He realized that the classical storage requirements 

for quantum systems grow exponentially in the number of particles. So while 

simulating twenty quantum particles only requires storing a million values, doubling 

this to a forty particle simulation would require a trillion values. Interesting 

simulations, say using a hundred or thousand particles, would not be possible, even 

using every computer on the planet. Thus he suggested making computers that utilized 

quantum particles as a computational resource that could simulate general quantum 

systems in order to do large simulations, and the idea of using quantum mechanical 

effects to do computation was born.  

The exponential storage capacity, coupled with some spooky effects like 

quantum entanglement, has led researchers to probe deeper into the computing power 

of quantum systems. Here, the idea of quantum computing is brought into FIC, to 

utilize quantum particles as a computational resource in order to reduce search 

complexity in FIC [34]. 

 The three key steps of quantum based FIC algorithm are, partition and 

transformation, quantum representation of classical image, and search optimal fractal 

code. 

 Partition and Transformation:  

Let I be a gray-scale image to be encoded. Partition I into a set of B×B pixels 

range blocks, which are non-overlapping and overlay the whole image.  

  ⋃   
 
                               (4.1) 
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Image I is also partitioned into a set of 2B×2B pixels domain blocks, which can 

be overlapping and need not overlay the whole image. The D block partition process 

can be done by sliding a 2B×2B window from left to right, top to bottom with 

horizontal step δh and vertical step δv. Here, δh= δv=B. The size of the range pool can 

be easily calculated by dividing       by      , and the size of the domain pool 

should be                . Subsequently, all domain blocks are contracted 

into the same size with range blocks by a spatial contraction, such as averaging four 

pixels to one pixel. 

 Quantum Representation of Classical Image:  

A novel method to represent classical images as normalized quantum states is 

proposed [26]. It represents image using two-dimensional (2- D) quantum states to 

locate each pixel in an image through row-location and column-location vectors. 

The dual representation of a 2-D image by the row-location and column location 

vectors is achieved by generating M-length row location vector and N-length column-

location vector with m-qubits and n-qubits, respectively, where m = log2M and n = 

log2N. To represent a pixel location in its 2-D matrix and to identify 2-D location of a 

pixel, the tensor product of the row-location vector and the column-location vector is 

carried out as follows, 

       ⟩  ⟨  
 
            (4.2) 

Where, Lp,q is the 2-D quantum state of a pixel at pth row and qth column using 

m-qubits and n-qubits, respectively. The next feature is the incorporation of pixel 

amplitude/intensity values into the scalar amplitude of its respective 2-D quantum 

state, requiring no additional qubits. In the quantum computation theory, the scalar 

amplitudes (α) of the quantum states [23], like the quantum states and the 

superposition of quantum states, are also constrained to be unit vector, i.e. 

∑ ∑   
   

 
   

 
                 (4.3) 
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Where, αp,q is the scalar amplitude of the pixel quantum state at p
th

 row and q
th

 

column. Let Ap,q be the amplitude/intensity of the pixel at p
th 

row and q
th

 column. To 

incorporate Ap,q into αp,q such that above equation is satisfied, αp,q can be written as, 

     √
    

∑ ∑     
 
   

 
   

      (4.4) 

As can be seen, Ap,q is normalized with respect to total amplitude   
    

∑ ∑     
 
   

 
   , in order to be used as αp,q. It must be noted that Ap,q can possess any 

value, whether unsigned integer or real values for gray scale images and the individual 

channels of color images. 

Now incorporate these structures for representation of domain and range blocks 

as quantum states. Making the use the 2-D quantum state representation of each pixel 

and its scalar amplitude, the quantum blocks can be represented as the superposition 

of all the pixel’s quantum states along with their scalar amplitudes. The range block 

representation, is defined as, 

  ⟩  ∑ ∑     
 
   

 
                         (4.5) 

After substituting Lp,q and αp,q, the above can be rewritten as, 

  ⟩  
 

√   
   

∑ ∑ √    
 
      ⟩  ⟨  

 
  

       (4.6) 

Similar representation is followed for the domain block   ⟩ with spatially 

contracted size     . 

Since a quantum bit can be effectively represented by a two-dimensional vector 

in a complex vector space, the above sequence of equations can be expediently 

implemented as two-dimensional vectors by programming with Matlab. After 

quantum representation, the rest operations of the algorithm can be implemented by 

means of matrix manipulations. 
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 Search optimal fractal code:  

Based on the above preparations, the best matching domain block for every 

range block should be searched. In the quantum scenario, the proximity between two 

states is measured from the quantum fidelity.  In the Quantum based FIC, the best 

matching domain block for every range block is determined by maximizing their 

quantum fidelity, i.e.  

        √    √   
 

                 (4.7) 

Where Tr(.) denotes matrix trace, ρD and ρR are density matrices of quantum 

states   ⟩and   ⟩, respectively. 

Compression result is achieved by recording parameters of the search results, 

optimal affine scalar parameters, serial number of the best matching domain block, 

and serial number of the isometric operations. 

4.1.1 Grover’s Search Algorithm 

The proposed Grover's algorithm performs a search over an unordered set of N = 

2
n
 items to find the unique element that satisfies some condition. While the best 

classical algorithm for a search over unordered data requires O(N) times, Grover's 

algorithm performs search on a quantum computer in only O(√N) operations, a 

quadratic speedup. In order to achieve such a speedup, Grover relies on the quantum 

superposition of states. This search principle is useful in reducing the search 

complexity in FIC to O(√N) steps. The algorithm steps are explained as in Fig. 2, 

• Like many quantum algorithms, Grover's begins by putting the machine into an 

equal superposition of all possible 2
n
 states of the n-qubit register. Remember that 

means there is equal amplitude of 
 

√  
 associated with every possible configuration of 

qubits in the system, and an equal probability of 
 

  
 that the system will be in any of 

the 2
n
 states. 

•  The next series of transformations is often referred to as the Grover iteration 

and will be repeated √N times. 
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– The first step is rotating phases of all states by π if it is a desired state and by 

0 otherwise.  

– The next part of the iteration performs inversion about the average, 

transforming the amplitude of each state. 

• Measure the resulting state. 

The sequences of such operations would not be possible if the amplitudes did not 

hold that extra information regarding the phase of the state in addition to the 

probability. These amplitude amplification algorithms are unique to quantum 

computing because of this quality of amplitudes that has no analogue in classical 

probabilities. 

 

Figure.4.1 Algorithm Flow of Grover’s Quantum Search                       

4.2  OPERATORS 

4.2.1 Operator to Create Equal Superposition of States 

An equal superposition of states is created by the application of the well-known 

Walsh-Hadamard operator [27]. The matrix representing the Walsh-Hadamard 

operator for an n bit quantum register is 2
n
 x 2

n
 matrix whose elements are defined to 

be: Wij = 2
-n/2

(-1)
i’.j’

, where i’ is the binary representation of i, and i’.j’is the bitwise dot 

product of the n bit strings i and j, i and j range from 0 to (N −1), Put another way, Wij 

= ±2
-n/2

, where the sign is positive if the bitwise AND of i and j has an even number of 

1's and negative otherwise. 
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4.2.2 Operator to Rotate Phase 

The matrix representing an arbitrary rotation operator is very simple. It takes the 

form of a diagonal matrix with Rij = 0 if i ≠ j, and Rii = e
√-1φi

. Here φi is an arbitrary 

real number, and from Euler's formula, the diagonal entries of the entries are 

equivalently written as cosφi + √-1 sinφi. 

4.2.3 Inversion about Average Operator 

The inversion about average operation on state vector as an operator takes the 

amplitude of the i'th state, and increases or decreases it so that it is as much above or 

below the average as it was below or above the average before the operation.  

The matrix representation of the inversion about average operator Â is defined: 

Aij = 2 / N if i ≠ j and Aij = -1+2 / N. Note that A = -I + 2P where I is the identity 

matrix, and P is the matrix with each element is equal to 1/N. Observe that P has the 

following two properties, first P
2
 = P, and second Pv, for any vector ν, results in a 

vector ν' with each element being the arithmetic average of the elements of ν. 

4.3  PARAMETERS USED FOR COMPARISON 

Peak Signal to Noise Ratio (PSNR) 

Peak signal-to-noise ratio, often abbreviated PSNR, is an engineering term for 

the ratio between the maximum possible power of a signal and the power of 

corrupting noise that affects the fidelity of its representation. Because many signals 

have a very wide dynamic range, PSNR is usually expressed in terms of the 

logarithmic decibel scale. 

PSNR is most commonly used to measure the quality of reconstruction of lossy 

compression codecs (e.g., for image compression). The signal in this case is the 

original data, and the noise is the error introduced by compression. PSNR is given by: 

          
    

√   
 

Here      is the maximum pixel value of the image. 
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Compression ratio (CR)  

Compression ratio (CR) is a measure of the reduction of the detailed coefficient 

of the data. In the process of image compression, it is important to know how much 

detailed (important) coefficient one can discard from the input data in order to 

sanctuary critical information of the original data. Compression ratio can be expressed 

as: 

CR  
                  

              
  

Structural Similarity Index (SSIM): 

The structural similarity (SSIM) index is a method for measuring the similarity 

between two images. The SSIM index is a full reference metric; in other words, the 

measuring of image quality based on an initial uncompressed or distortion-free image 

as reference. The difference with respect to other techniques mentioned previously 

such as MSE or PSNR is that these approaches estimate perceived errors; on the other 

hand, SSIM considers image degradation as perceived change in structural 

information. Structural information is the idea that the pixels have strong inter-

dependencies especially when they are spatially close. These dependencies carry 

important information about the structure of the objects in the visual scene. The 

measure between two windows x and y of common size N x N is: 

SSIM = 
(        )(       )

(  
    

    )(  
    

    )
 

With 

    the average of x 

    the average of y 

   
  the variance of x 

   
  the variance of y 

     the covariance of x and y 

    and    two variables to stabilize the division with weak denominator 
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Other parameters used for comparison are memory requirement and computation 

time. Memory requirement is calculated based on the image matrix size and search 

comparisons. The saving factor is determined based on the memory requirement 

comparison. 
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CHAPTER 5 

SIMULATION RESULTS 

This chapter compares the performance of the existing fractal image 

compression algorithms in literature over the proposed algorithm. The studied 

algorithms are applied on several types of images: natural images, textures, satellite 

images, benchmark images such that the performance of proposed algorithm can be 

verified for various applications. These benchmark images are the standard image 

generally used for the image processing applications. The results of the meticulous 

simulation for all images are presented in this section. 

5.1 SIMULATION RESULTS 

Two image sets, consisting of textures and satellite images, used to evaluate the 

performance of the proposed algorithm with the other algorithms are given in 

Figure.5.1 and Figure.5.2. The algorithms are simulated using Matlab R2012a on 

Intel(R) Core i5 2.5 GHz PC. 

 

Figure.5.1 Texture image set 
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Figure.5.2 Satellite image set 

The simulation results can be obtained for images of varying size. Original and 

reconstructed satellite images are shown in Figure.5.3. It can be seen, from Table.5.1, 

the compression ratio CR is high in satellite image for Quantum algorithm as 

compared to DCT, since this type of image is more based on fractal geometry. The 

decoded image quality measured as PSNR is good in quantum algorithm as there is no 

loss of detailed coefficients as in DCT.  

  Input Image  Decoded-DCT Decoded-Quantum 

 
     PSNR= 38.716471 PSNR= 40.260905 

 

     PSNR= 38.481592 PSNR= 39.083457 
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     PSNR= 35.438560 PSNR= 36.717084 

 
     PSNR= 36.993792 PSNR= 38.397880 

 
     PSNR= 34.706508 PSNR= 34.921291 

 
     PSNR= 36.949245 PSNR= 39.198203 

Figure.5.3 Original and Reconstructed Satellite images 

Table.5.1 Performance comparison of existing and proposed algorithm 

Input image 

Compression factor PSNR(dB) Compression time(s) 

DCT QUANTUM DCT QUANTUM DCT QUANTUM 

Satellite 24.93 28.53 35.43 36.71 9.45 3.35 

Texture 19.57 19.12 32.13 37.9 11.42 1.17 

Lena 11.79 8.86 34.32 37.13 7.69 1.20 
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Even though, DCT gives lesser compression ratio, it is computationally efficient 

compared to other traditional techniques. So, the comparison between quantum 

algorithm and existing computationally efficient DCT algorithm helps to understand 

the improvement of computational efficiency over the existing best algorithm. The 

results show that the required speedup is achieved in the proposed algorithm using 

quantum superposition of states. Especially for the fractal oriented satellite image, the 

compression time (CT) is reduced from 9.4 sec to 3.35 sec. 

To increase the compression ratio further, the algorithm is run with different 

sizes of range and domain blocks. Smaller size of the block helps in identifying the 

most similar blocks which means a larger compressed file, because of more fractal 

codes. Figure.5.4 and Figure.5.5 gives the compressed images of single satellite and 

texture image respectively for two different block size. The performance results of 

quantum algorithm for texture and satellite images of two different block sizes are 

presented in the Table.5.2 and Table.5.3. 

       Input Image           16 x 16 Range block  8 x 8 Range block 

 

 

Figure.5.4 Original and Reconstructed Texture image from Quantum Algorithm 

    Input Image           16 x 16 Range block  8 x 8 Range block 

 

Figure.5.5 Original and Reconstructed Satellite image from Quantum Algorithm 

PSNR= 34.30 dB PSNR= 36.87 dB 

 

PSNR= 39.198 dB PSNR= 39.240 dB 
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Table.5.2. Performance comparison of quantum algorithm for Texture Image set 

Table.5.3.Performance comparison of quantum algorithm for Satellite Image set 

It is observed that from Figure.5.6 and Figure.5.7, the compression factor is 

improved in smaller block size without much degradation in the retrieved image 

quality. So when block size is reduced, the number of blocks to be searched is 

increased. Due to this the complexity of search is increased as shown in Figure.5.8. 

The complexity involved in two different sizes of the algorithm is given in the 

Table.5.4. 

Input image Compression factor PSNR(dB) Complexity(in Computations) 

Domain- 

Range  - 

32X32 

16X16 

16X16 

8X8 

32X32 

16X16 

16X16 

8X8 

32X32 

16X16 

16X16 

8X8 

Image 1 38.594 39.704 35.248 37.531 13010881 59534049 

Image 2 37.904 38.618 34.370 35.932 13011137 59534305 

Image 3 37.675 37.822 34.428 36.162 13010625 59533793 

Image 4 38.102 38.826 34.244 36.043 13010753 59533921 

Image 5 37.540 38.818 34.252 35.755 13011137 59534305 

Image 6 37.672 39.108 34.301 36.878 13011009 59534177 

Input image Compression factor PSNR(dB) Complexity(in Computations) 

Domain- 

Range  - 

32X32 

16X16 

16X16 

8X8 

32X32 

16X16 

16X16 

8X8 

32X32 

16X16 

16X16 

8X8 

Image 1 39.458 40.289 40.260 39.316 13010881 59534049 

Image 2 41.589 42.749 37.083 37.158 13011137 59534305 

Image 3 28.533 30.721 36.717 36.850 13010625 59533793 

Image 4 29.556 30.867 38.397 37.285 13010753 59533921 

Image 5 39.724 42.411 34.291 32.572 13011137 59534305 

Image 6 39.446 39.797 39.198 39.240 13011009 59534177 
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Figure.5.6 Comparison graph based on Compression factor for Satellite Images 

 

Figure.5.7 Comparison graph based on PSNR for Satellite Images 

 

Figure.5.8 Comparison graph based on Complexity 
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Table.5.4 Complexity of Quantum algorithm for different sizes 

 

 

 

 

 

 

 

Taken the size of the given input image is M x N, and the sizes of the domain 

blocks and range blocks are 2B x 2B and B x B, respectively. To represent all of the 

domain blocks and range blocks as quantum states, the computation required is (M – 

2B + 1) x (N – 2B + 1) and (M/B) x (N/B) respectively. So the computational 

complexity of quantum representation should be OQR = (M – 2B + 1) x (N – 2B + 1) + 

(M/B) x (N/B). Meanwhile, the computational complexity of searching self-

similarities is OSS = (M – 2B + 1) x (N – 2B + 1) x (M/B) x (N/B). Normally, the 

value of OQR is several orders of magnitude smaller than the value of OSS. For 

example, set M = N= 512 and B = 8, the ratio of OSS to OQR is 39870. Therefore, this 

gives every reason to neglect the computational complexity of quantum representation 

while calculating the computational complexity of the whole algorithm. 

To reduce the search complexity specified in the Table.5.4, Grover’s search is 

adopted along with the quantum FIC algorithm. This helps in reducing complexity to 

O(√N) steps. The Figure.5.9 depicts how Grover’s search is deployed to search and 

code the single fractal part from the total blocks available. 

Complexity 

QUANTUM 

(32 X32 

16X16) 

QUANTUM 

(16X16 

8X8) 

In Quantum 

 Representation 
50881 59105 

In Searching  

Similarities 
12960000 59474944 
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Figure.5.9 Grover’s search of single fractal block 

This is accomplished by observing the amplitudes of the resulting states in each 

step, it is identified that only the amplitude of the required state increases gradually at 

each step. Now when the system is observed, the probability that the state 

representative of the correct solution, measured in O(√N) is 93.14%. The probability 

of finding an incorrect state is 6.86%. Grover's algorithm is more likely to give the 

correct answer than an incorrect one with an input size of N = 64, and the error only 

decreases as the input size increases. Although Grover's algorithm is probabilistic, the 

error truly becomes negligible as N grows large. 

Table.5.5 shows the amount of reduction in computations when the Grover’s 

algorithm is adopted. The point at which we terminate Grover’s algorithm and 

measure the result is critical. It has been shown that in Figure.5.10, the optimum 

number of Grover’s iteration is ≈ 
 

 
√

 

 
, where M is the number of solutions.  
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Table.5.5 Complexity of Quantum algorithm with Grover’s search for  

different sizes 

Complexity 

QUANTUM 

(32x32  

16x16) 

QUANTUM 

(16x16  

8x8) 

In Full search 12960000 59474944 

In Grover's Search 3584 7680 

In Grover's Search 

(Theoretical) 
3600 7712 

 

 

Figure.5.10 Comparison graph based on Complexity after Grover’s search 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

Quantum approach to fractal image compression has been examined and sought 

to improve it by formulating the search approach using Grover’s algorithm. 

Experiment shows that the proposed representation on the algorithm without Grover’s 

search can able to provide good compression factor and better reconstruction PSNR. 

Especially, for the images that consist of detailed view and structural similarities, 

performance of the algorithm is better. Hence, it can be implemented for compressing 

natural, texture and satellite images. In order to increase compression factor further, 

the simple modification to the algorithm like decreasing range and domain block size 

significantly had an impact on the compression results. But the search complexity in 

the algorithm remained as a drawback, because it results in high computational and 

time requirements of encoding part. Therefore, Grover’s Search Algorithm has been 

adopted along with Quantum FIC, which resulted in a successful search with certainty 

in only O√N attempts. Based on the comprehensive simulation results presented for 

different images, it can be seen that the Quantum-FIC algorithm along with Grover’s 

search outperforms the existing algorithms.  

           As a future work different partitioning schemes and entropy encoding for the 

fractal codes can be implemented to further improve compression ratio.  
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